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Abstract

I will propose the notion that the universe is digital, not as a claim about

what the universe is made of but rather about the way it unfolds. Central

to the argument will be the concepts of symmetry breaking and algorith-

mic probability, which will be used as tools to compare the way patterns

are distributed in our world to the way patterns are distributed in a simu-

lated digital one. These concepts will provide a framework for a discussion

of the informational nature of reality. I will argue that if the universe were

analog, then the world would likely be random, making it largely incom-

prehensible. The digital model has, however, an inherent beauty in its

imposition of an upper limit and in the convergence in computational

power to a maximal level of sophistication. Even if deterministic, that it

is digital doesnt mean that the world is trivial or predictable, but rather

that it is built up from operations that at the lowest scale are very simple

but that at a higher scale look complex and even random, though only in

appearance.

1 Everything out of nothing

Among the simplest hypotheses compatible with the best account of the origin of
the universe that we currently have, one can either choose to start from nothing,
the state of the universe with all its matter and energy squeezed into an infinitely
small point of no length, no width, and infinite density called a singularity; or
else a fraction later, out of a state of complete disorder such that once particles
formed they couldnt do anything except collide with each other in a completely
disordered way. In either case there had to have been a transition to the state
in which we find ourselves today, in a universe with physical laws describing
our reality, from the biggest to the tiniest, laws that are often simple enough to
be easily comprehensible even if the phenomena they describe are complicated.

∗None of the views expressed herein necessarily reflects those held by my employers or by
the institutions with which I am affiliated.
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The universe seems highly ordered and structured today, in contrast to the
background noise left behind by the Big Bang, which is similar to what one
would see on the screen of an old untuned analog TV (Figure 1, image at left)
or hear on an untuned radio station. Given the random state physicists believe
to have existed at the inception, embodying little to no information, how did
we arrive at the structured world that we now inhabit?

Whether the universe began its existence as a single point, or whether its
inception was a state of complete randomness, one can think of either the point
or the state of randomness as quintessential states of perfect symmetry. Either
no part had more or less information because there were no parts or all parts
carried no information, like white noise on the screen of an untuned TV. In
such a state one would be unable to send a signal, simply because it would
be destroyed immediately. But thermal equilibrium in an expanding space was
unstable, so asymmetries started to arise and some regions now appeared cooler
than others. The universe quickly expanded and began to produce the first
structures.

Figure 1: From noise to highly organized structures. The cosmic background radiation (left)
or what the universe looked like at all scales in every direction, and the kinds of structures
(right) we find in our everyday life today.

When the universe had cooled to the point where the simplest atoms could
form, white noise no longer dominated and matter took over, embarking on
a process of structure formation. The first symmetry breaking led to more
symmetry breaking. This symmetry breaking can be found everywhere in the
universe, from the great disparity between matter and antimatter (atoms with
inverted charge particles) to the way planets rotate in a single direction around
the sun; or in the form of what is today known as homochirality, groups of
molecules that lack a configuration of non-superposable mirror images; and in
living beings, all of whom share amino acids and sugars but genetically encoded
so that each possesses one particular (arbitrary) molecular orientation rather
than another. This symmetry breaking is the fabric of information. The laws of
physics may have arisen in this way, not as agents shaping the universe but as a
result of the unfolding of this dynamic of information processing from symmetry
breaking.

2



1.1 Complexity from randomness

If you wished to produce the digits of the mathematical constant π by throw-
ing digits at random, youd have to try again and again until you got a few
consecutive numbers matching an initial segment of the decimal expansion of
π.The probability of succeeding would be very small: 1/10 multiplied by the
desired number of digits. For example, (1/10)2400 for a segment of length 2400
digits of π. But if instead of throwing digits into the air, one were to throw
bits of computer programs and execute them on a digital computer, things turn
out to be very different. For example, a program producing the digits of the
mathematical constant π would have a greater chance of being produced by a
computer program. The following is an example of a program written in ANSI
C language of only 158 characters producing the first 2400 digits of π:

int a=10000,b,c=8400,d,e,f[8401],g;main(){for(;b-c;)

f[b++]=a/5;for(;d=0,g=c*2;c-=14,printf(‘‘\%.4d’’,e+d/a),

e=d\%a)for(b=c;d+=f[b]*a,f[b]=d\%--g,d/=g--,--b;d*=b);}

This program compresses the 2400 digits of π, and there are many other for-
mulae that can be implemented as computer programs to generate any arbitrary
number of digits of π.

Computer programs are like physical laws; they produce order by filtering out
a portion of what one feeds them. Start with a random-looking string and run a
randomly chosen program on it, and there’s a good chance your random-looking
string will be turned into a regular, often non-trivial, and highly organized one.
In contrast, if you were to throw particles, the chances that they’d group in the
way they do if there were no physical laws would be so small that nothing would
happen.

Just as formulae producing the digits of π are compressed versions of π,
physical laws distill natural phenomena from a series of observations. These
laws are valuable because thanks to them one can predict the outcome of a
natural phenomenon without having to wait for it to unfold in real time. Solve
the equations describing planetary motion and instead of having to wait two
years to know the future positions of a planet, one can (almost1) know them
precisely and in a fraction of a second (the time it takes to compute the equation)
two years in advance. Laws are always associated with calculations, and it is
no coincidence that all these calculations turn out to be computable, whether
the computations are carried out by humans or by computers. For all practical
purposes physical laws are just like computer programs. Physical laws, like
computer programs, make things happen.

1Although this is a whole subject unto itself, it may be pointed out here that the fact
that our theories are approximate is due to the same symmetry-breaking happening at all
scales, making our predictions diverge in the long term. But it is this same phenomenon—a
phenomenon that one may associate with imperfection as opposed to perfect symmetry–that
has continuously created information in the past and continues to do so still.
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2 A bit-string Universe

When Leibniz started doing binary arithmetic, he thought that the world could
have come into existence from nothing (zero) and one because everything could
be written in this language (the simplest possible language by number of symbols
involved), the binary language. Out of this extremely simplified language, out
of its beauty, the world came into being before his eyes. If the world were digital
at the lowest scale one would end up seeing nothing but strings of bits. They
would have looked very random in the first seconds of existence of the universe,
and they would suddenly have started displaying patterns equivalent to clusters
of particles–as actually happened. Strings would have formed the equivalent
of galaxies, bit-string galaxies, bit-string solar systems and bit-string planets,
indeed all manner of bit-string things.

The existence of human-made digital computers in the universe is an obvious
demonstration that the universe is capable of performing digital computation.
The main questions therefore are whether this computation occurs naturally in
the universe, how pervasive it is, and whether it is of the same kind as that
performed by digital computers. In other words, how different is a bit-string
universe to the universe in which we live. The bit-string version is of course an
oversimplification, but the two may not, in the end, be that different.

Figure 2: Patterns generated by a 2D 9-neighbor with Wolfram’s rule number 40. Shown
here are state space diagrams every 6 runtime steps starting from a 100×100 array of (pseudo-
)random bits.

For if all matter is made of the same basic particles, what makes one object
different from another other than the fact that it occupies a different space?
What makes a cup a cup and not a human being is quite simply the way its
particles are configured. One could disassemble a cup (or several cups) and
reassemble them as a human being. What makes a cup a cup and a human
being a human being is information. In an informational universe, the world
would be computing itself, enabling things to remain themselves. Our digital
computers would be reprogramming a part of the universe to make it compute
what we want it to compute.

But at a microscopic level, the quantum greatly differs from the macroscopic
world. In the macroscopic world randomness is apparent, according to this view
(and ultimately according to classical mechanics), but it is fundamentally differ-
ent under the standard interpretation of quantum mechanics. At the quantum
scale, things seem disconnected, yet a compatible informational interpretation
may be possible. Information can only exist in our world if it is carried by a pro-
cess; every bit has to have a correspondent physical carrier. Even though this
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carrier is not matter, it takes the form of an interaction between components of
matter, an atom interacting with another atom, or a particle interacting with
another particle. But at the lowest level, the most elementary particles, just
like single bits (the Shannon Entropy of a single bit is 0), carry no information
when they are not interacting with other particles. They have no causal his-
tory because are memoryless isolated from external interaction. When particles
interact with other particles they link themselves to a causal network and look
as if they were forced to define a value as a result of this interaction (e.g. a
measurement). What surprises us about the quantum world is precisely its lack
of the causality that we see everywhere else and are so used to. But it is the
interaction and its causal history that carries all the memory of the system, with
the new bit appearing to us as if it had been defined at random. Linking a bit
to the causal network may also produce correlations of measurements between
seemingly disconnected parts of space, but if space is informational at its deep-
est level, if information is even more fundamental than the matter of which it is
made and the physical laws governing that matter, then the question of whether
these effects violate physical laws may be irrelevant. Producing random bits in
a deterministic universe, where all events are the cause of other events, would
actually be very expensive (one would have to devise a way to break the causal
network, assuming that this were possible to begin with).

3 The algorithmic nature of the world

If one does not have any reason to choose a specific distribution and no prior
information is available about a dataset, the uniform distribution is the one
making no assumptions according to the principle of indifference. Consider an
unknown operation generating a binary string of length k bits. If the method is
uniformly random, the probability of finding a particular string s is exactly 2−k,
the same as for any other string of length k, which is equivalent to the chances
of picking the right digits of π. However, data (just like π–largely present, for
example, in nature in the form of common processes relating to curves) are
usually produced not at random but by a process.

There is a measure which describes the expected pattern frequency distribu-
tion of an abstract machine running a random program. A process that produces
a string s with a program p when executed on a universal Turing machine T
has probability m(s) (Identified as the miraculous universal distribution in [6]).
For any given string s, there is an infinite number of programs that can produce
s, but m(s) is defined such that one can assign a probability of a string being
produced by a random program (see the Appendix).

The distribution m(s) has another interesting particularity, one can start
out of almost anything and, as most probabilistic distributions, the distribution
remains mostly unchanged. It is the process that determines the shape of the
distribution and not the initial conditions from which the programs may start
from. This is important because one does not make any assumption on the
distribution of initial conditions but on the distribution of programs. Programs
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running on a universal Turing machine should be uniform, which does not nec-
essarily mean truly random. For example, to approach m(s) from below, one
can actually define a set of programs of certain size and define any enumeration
to systematically run each program one by one.

Figure 3: Start out of nothing or out of randomness and one gets a structured world by
iterated computation.

Just as strings can be produced by programs, we may ask after the probabil-
ity of a certain outcome from a certain natural phenomenon, if the phenomenon,
just like a computing machine, is a process rather than a random event. Rather
if it is a computational process, and no other information about the phenomenon
is actually assumed, one can see whether m(s) says anything about a distribu-
tion of possible outcomes in the real world. In a world of computable processes,
m(s) would indicate the probability that a natural phenomenon produces a par-
ticular outcome and how often a certain pattern would occur. If you were going
to bet against certain events in the real world, without having any other infor-
mation, m(s) would be a reasonable decision if the world were algorithmic and
ultimately digital, just as it is for abstract (digital) machines.

3.1 Unveiling the machinery

So if one wished to know whether the world were algorithmic in nature, one
would first need to specify what an algorithmic world would look like. If the
world is in any respect an algorithmic world, the structures in it should be
alike, with their distribution of patterns resembling each other. To demonstrate
this, we conceived and performed[14] a series of experiments to produce data
by purely algorithmic means in order to compare it to sets of data produced by
several physical sources.
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On the one hand, samples from physical sources were taken. At the right
level data can always be written in binary because each physical observation
leading to values (weight, location, etc.) can be numerated independently as a
discrete sequence. Each frequency distribution is the result of the count of the
number of occurrences of k-tuples (substrings of length k) extracted from the
binary strings from both the empirical and the digital datasets obtained from
the output of digital machines. On the other hand, we produced an experimental
version of m(s) by running a large set of small Turing machines for which the
halting times are known (thanks to the busy beaver problem). The frequency
distributions generated were then statistically compared (see [14]). A ranking
correlation test was carried out and its significance measured to validate either
the null hypothesis or the alternative (the latter being that the similarities
among empirical data and the digital world are due to chance).

Some similarities and differences between the physical world and the purely
algorithmic world were found. To cite a typical example, in the study of the
string symmetry group (see Appendix), strings of the type (01)n appear low-
ranked in the empirical data distributions, unlike in the digital ones, where
they appear better ranked. In the real world, strings are usually not delimited,
just as processes don’t start from a blank tape (to use a Turing machine as an
analogy–see Appendix). In the real world, the probability of destroying highly
symmetrical strings is higher than that of assembling a symmetrical string by
changing bits at random. There is no way to tell when a process starts or ends
in nature, and likewise there is no way to set measurements taking into account
the “right” time lengths of empirical dataset streams.

But in the simulated world things are different because machines have a
halting configuration, such as a special halting state. And because in our sim-
ulated world machines have no interaction with any other machines, periodic
and highly symmetric strings have a greater chance of making it intact, appear-
ing better ranked in the frequency of strings from higher to lower frequency
(hence lower to higher random complexity). To verify that this was actually
the case we set up two other different experiments. One consisted in start-
ing the machines from random initial conditions. Even if this does not fully
simulate having machines interacting with other machines at every step, it is
a setup closer to what happens in the real world, where computations usually
start where other computations end. The other experiment consisted of run-
ning non-self-delimited machines like one-dimensional cellular automata which
by definition do not have any halting configuration. Their computations could
be halted at arbitrary times, resulting in strings of arbitrary length, just as
would happen in most experiments in the real world when one has basically to
decide when to stop making a measurement in order to start a frequency analy-
sis. What we found was what we were expecting to find: the highly structured
(01)n string was ranked lower compared to the first simulation, and the longer
the n the less well ranked in comparison to the original experiment with halting
machines, and closer to the rank of the distributions of empirical data.

What happens is that in the real world highly organized strings have little
chance of making it if they interact with other systems. Changing a single
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bit destroys a perfect 2-period pattern of a (01)n string, and the longer the
string, the greater the odds of it being destroyed by an interaction with another
system or because it has been trimmed in the wrong place at the time of the
measurement. In the case of halting Turing machines, however, strings are
delimited by the code telling the machine to produce exactly n alternations and
halt.

We found that while the correlation between the real world dataset and the
digital dataset was not significant enough to be conclusive, each distribution
was correlated–with varying degrees of confidence–with at least one algorithmic
distribution produced by a model of computation. In other words, distribu-
tions from empirical data disperse patterns in a similar way to the distributions
generated by using digital computers (Turing machines, cellular automata and
other abstract machines).

3.2 How different is our world from a simulated digital

one?

To illustrate how natural processes may be algorithmic, and to specify what
we really mean by this, the case of DNA could serve as a perfect example.
Processes known to be involved in the replication and transmission of DNA,
such as chromosomal translocation (a fragment of one chromosome is broken off
and is then attached to another), reverse transcriptase, fragment code exchange
and crossover, chemical annealing (pairing by hydrogen bonds to a complemen-
tary sequence) and DNA denaturation (separation into single-stranded lengths
through the breaking of hydrogen bonding between the bases), are all relatively
simple processes, and highly algorithmic in principle. A subset of purely digi-
tal operations can match such operations with computational ones. Operations
such as joining, copying, partitioning, complementation, trimming, or replacing
are equivalent to those that may be observed in DNA. Rules operative in DNA
may also be of the same simple kind as those governing other types of physical
phenomena, leading us to sometimes discover strong similarities in their tuples
distribution. DNA construction, except perhaps for the mutation operation
(the result of interaction with another system and not a true random function
operating on the DNA) is the result of a long period of application of simple
rules, with layer upon layer of the code of life built up over billions of years in a
deep algorithmic process with its own characteristic rules. Thus it has its own
particular modus operandi, but it is an algorithmic one.

The claim that empirical data can be treated as a whole as regards distri-
bution (i.e. the frequency of certain patterns against others)–as if all empirical
data were of the same nature–must of course be made with great circumspec-
tion. One would first need to show that there is a general joint distribution
behind all sorts of empirical data. This was indeed something that we tested
and reported[14]. The demonstration that most empirical data carries an algo-
rithmic signal is that most data are comprehensible to some greater or lesser
degree. Think of the diverse kinds of data that you store in your personal com-
puter, whether music, images or text, all of them highly (lossless) compressible.
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One may wonder whether the lossless compressibility of data is in any sense
an indication of the discreteness of the world. It is, and we have presented some
material here that supports our answer. The relationship is actually strong;
the chances of finding incompressible data in an analog world are much greater,
simply because the possibilities for anything are much greater. The essential
difference between one world and the other is the introduction of actual infinity.
An analog world means that one can divide space and/or time into an infinite
number of pieces, and that matter and everything else may be capable of fol-
lowing any of these infinitely many paths and convoluted trajectories. It may
seem possible to make a lot of sense out of it by way of the successful fields of
differential calculus and mathematical analysis, yet one has to make a distinc-
tion between what symbols represent and what the actual calculations among
the symbols are.

If our world is analog, it would have a greater chance of looking like a Chaitin
Ω, a random number by definition (see the Appendix), dependent on the un-
predictability of universal digital computers, also called the halting probability.
The world may be a small, apparently ordered fragment of a globally random
universe, as Calude and Meyerstein have suggested[2]. In which case we should
consider ourselves extremely lucky to live in a tiny, apparently ordered part.
Were we in Calude’s universe, reality would consist of just the apparently or-
dered instant in which we live; or the world could be mostly organized, as it
suggests, and as the theory of computation may predict as explained herein.

Unlike some physicists (for example the views expressed by Stephen Wein-
berg in a recent interview with Amir Aczel[9]) who seem to think that a theory
explaining the universe will ultimately be very complicated and mathematical,
we think that the correlations found are due to the following reason: general
physical processes are dominated by simple algorithmic rules, the same rules
that digital computers are capable of carrying out. Our reasoning and empiri-
cal findings suggest that the information in the world is the result of processes
resembling computer programs rather than of dynamics characteristic of a more
random, or analog, world.
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Appendix: Some basic theory

Turing machine

A Turing machine[12] is a 5-tuple {si, ki, s
′
i, k

′
i, di}, where si is the tape symbol

the machine’s head is scanning at time t, ki the machine’s current state (the
instruction) at time t, s′i a unique symbol to write (the machine can overwrite
a 1 on a 0, a 0 on a 1, a 1 on a 1, or a 0 on a 0) at time t + 1, k′i a state to
transition into (which may be the same as the one it was already in) at time
t + 1, and di a direction to move in time t + 1, either to the right (R) cell or
to the left (L) cell, after writing. At a time t the Turing machine produces an
output described by the contiguous cells in the tape visited by the head. The
machine halts if and when it reaches the special halt state 0.

A universal Turing machine is capable of reading the transition rules of any
other machine and performing the same computation over any initial configu-
ration of the tape.

The halting problem

One can ask whether there is a Turing machine U which, given code(T ) and the
input s, eventually stops and produces 1 if T (s) halts, and 0 if T (s) does not
halt. Turing[12] proves that there is no such U .

The busy beaver game

We denote by (n, 2) the class (or space) of all n-state 2-symbol Turing ma-
chines (with the halting state not included among the n states). A busy beaver
machine[8] is a Turing machine that writes more 1s on the tape than any other
of the same size (number of states).

If σT is the number of 1s on the tape of a Turing machine T upon halting,
then:

∑
(n) = max {σT : T ∈ (n, 2) T (n) halts}.

If tT is the number of steps that a machine T takes upon halting, then
S(n) = max {tT : T ∈ (n, 2) T (n) halts}.

∑
(n) and S(n) are noncomputable

by reduction to the halting problem. Values are known for (n,2) with n ≤ 4.

Algorithmic complexity

The algorithmic complexity[11, 5, 7, 3] (also known as Kolmogorov-Chaitin com-
plexity or program-size complexity) CU (s) of a string s with respect to a uni-
versal Turing machine U , measured in bits, is defined as the length in bits of
the shortest Turing machine U that produces the string s and halts. Formally,
CU (s) = min{|p|, U(p) = s} where |p| is the length of p measured in bits.

Algorithmic complexity formalizes the concept of simplicity versus complex-
ity. It opposes what is simple to what is complex or random.
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Algorithmic probability

Levin’s m(s) is the probability of producing a string s with a random program
p when running on a universal prefix-free Turing machine[7]. That is, a ma-
chine for which a valid program is never the beginning of any other program,
so that one can define a convergent probability the sum of which is at most 1.
Formally, m(s) = Σp:U(p)=s2

−|p|, i.e. the sum over all the programs for which
U with p outputs the string s and halts. m(s) is the probability that the output
of U is s when provided with a sequence of fair coin flip inputs as a program.
m is related to the concept of algorithmic complexity in that m(s) is at least
the maximum term in the summation of programs, which is 2−C(s). Roughly
speaking, algorithmic probability says that if there are many long descriptions
of a certain string, then there is also a short description (low algorithmic com-
plexity) and vice versa. As neither C(s) nor m(s) is computable, no program
can exist which takes a string s as input and produces m(s) as output.

String symmetry group

The symmetry group of an object is the group of all isometries under which it is
invariant. One can identify three symmetry preserving transformations for bit
strings: identity (id), reversion (re), complementation (co) and the composition
of (re) and (co) are the possible symmetry preserving operations. A tool that
makes it possible to count the number of discrete combinatorial objects of a
given type as a function of their symmetrical cases is provided by Burnside’s
lemma, given by the formula: (2n+2n/2+2n/2)/4 for n odd, (2n+2(n+1)/2)/4
otherwise.
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